Klamath River Fall Chinook Age-Specific Escapement, River Harvest, and Run Size Estimates, 2006 Run

Klamath River Technical Advisory Team 1 February 2007

Executive Summary

The number of Klamath River fall Chinook returning to the Klamath River Basin (Basin) in 2006 was estimated to be:

	Rui	n Size
Age	Number	Proportion
2	27,100	0.31
3	18,600	0.21
4	41,800	0.47
5	1,300	0.01
Total	88,700	1.00

Preseason forecasts of the number of fall Chinook adults returning to the Basin and the corresponding post-season estimates are:

	Aa	lults
Sector	Preseason Forecast	Postseason Estimate
Run Size	47,600	61,600
Fishery Mortality		
Tribal Harvest	10,000	10,300
Recreational Harvest	0	100
Drop-off Mortality	900	1,000
Hook/Release Mortality	<u>300</u>	<u>400</u>
	11,200	11,700
Escapement		
Hatchery Spawners	15,300	19,500
Natural Area Spawners	<u>21,100</u>	<u>30,400</u>
	36,400	49,900

Introduction

This report describes the data and methods used by the Klamath River Technical Advisory Team (KRTAT) to estimate age-specific numbers of fall Chinook returning to the Basin in 2006. The estimates provided in this report are consistent with the Klamath River Megatable (CDFG 2007) and with the 2007 forecast of ocean stock abundance (KRTAT 2007).

Age-specific escapement estimates for 2006 and previous years, coupled with the coded-wire tag (CWT) recovery data on the Basin's hatchery stocks, allow for a cohort reconstruction of the hatchery and natural components of Klamath River fall Chinook (KRTAT 2007, Goldwasser et al. 2001). Cohort reconstruction results enable forecasts to be developed for the current year's ocean stock abundance, ocean fishery contact rates, and percent of spawners expected in natural areas (KRTAT 2007). These forecasts are necessary inputs to the Klamath Ocean Harvest Model (Mohr

et al. 2001); the model used by the Pacific Fishery Management Council to forecast the effect of fisheries on the Klamath River fall Chinook stock.

Methods

The KRTAT obtained estimates of abundance and age composition separately for each sector of harvest and escapement. Random and nonrandom sampling methods of various types were used throughout the Basin (Table 1) to obtain the data from which the Klamath River Megatable totals and estimates of age composition were derived.

Estimates of age composition were based on random samples of scales (Table 2) whenever possible. Generally, each scale is aged independently by two trained readers. In cases of disagreement, a third person arbitrates. Statistical methods (Kimura and Chikuni 1987, Cook and Lord 1978, Cook 1983) were used to correct the reader-assigned age composition estimates for potential bias based on the known-age vs. read-age validation matrices. The method used to combine the random sample's known ages (CWT fish) and unknown read ages for estimation of the escapement age-composition is described in Appendix A.

The KRTAT relied on length-frequency analysis where the sample of scales was non-representative of the age-two component. In these cases, all fish less than or equal to a given fork-length "cutoff" were assumed to be age-two, and all fish greater than the cutoff length were assumed to be adults. The cutoff value varied by sector, and was based on location of the length-frequency nadir and, if appropriate, known-age (CWT) length-frequencies. As before, scales were used to estimate the age composition of adults (Appendix A).

The KRTAT relied on surrogate data where the sample of scales was insufficient for estimation of age composition, or was altogether lacking within a particular sector.

An indirect method of subtraction was used to estimate age composition for natural spawners in the Trinity River above the Willow Creek Weir (WCW). Age-specific numbers of fall Chinook that immigrated above the WCW were estimated by applying the age composition from scales collected at the weir to the estimate of total abundance above the weir. Next, the age composition of the returns to Trinity River Hatchery and of the harvest above WCW were estimated. The age composition of natural spawners above the weir was then estimated as the age-specific abundances above the WCW, minus the age-specific hatchery and harvest totals.

Alternative methods were employed to estimate the age-composition of the Shasta River run (Appendix B).

Methods used to estimate adult non-catch mortality associated with the 2006 jack-retention only recreational fishery are described in Appendix C.

The specific protocols used to develop estimates of age composition for each sector are provided in Table 3. A summary of the KRTAT minutes specific to each sector is given in Appendix D for the Klamath River and Appendix E for the Trinity River.

Results

A total of 12,749 scales from 15 different sectors were used for this analysis (Table 2). Of these, 1,102 were from known-age (CWT) fish. Known-age scales provide a direct check, or "validation," of accuracy of the scale-based age estimates (Tables 4a and 4b, Appendices F and G). Overall, the scale-based ages were accurate and precise. For the Trinity River, accuracy was > 95% for age-2, age-3, and age-4 fish, and was 50% for age-5 fish. For the Klamath River the accuracy was \geq 86% for age-2, age-3, and age-4 fish, and 59% for age-5 fish. The statistical bias-adjustment methods employed are intended to correct for scale-reading bias, but the methods assume that the

known-age vs. read-age validation matrices are themselves well estimated (Kimura and Chikuni 1987).

Table 5 presents estimates of age-specific returns to Basin hatcheries and spawning grounds, as well as Basin harvest by Tribal and recreational fisheries and the drop-off mortality associated with those fisheries. Calculations underlying the results summarized in Table 1 are presented in Appendix H.

List of Acronyms and Abbreviations

ad-clipped adipose fin removed

CDFG California Department of Fish and Game

CWT coded-wire tag

EST Klamath River estuary

FL fork length

HVT Hoopa Valley Tribe IGH Iron Gate Hatchery

KRTAT Klamath River Technical Advisory Team

KT Karuk Tribe

M&U Klamath River below Weitchpec: "middle" section (Hwy 101–Surpur Ck) and "upper"

section (Surpur Ck—Trinity River)

SRRC Salmon River Restoration Council

TRH Trinity River Hatchery USFS U.S. Forest Service

USFWS U.S. Fish and Wildlife Service

WCW Willow Creek Weir

YT Yurok Tribe

YTFP Yurok Tribal Fisheries Program

Literature Cited

- CDFG (California Department of Fish and Game). 2007. Klamath River basin fall Chinook salmon spawner escapement, in-river harvest and run-size estimates, 1978–2006. Available from W. Sinnen, CDFG, 5341 Ericson Way, Arcata, CA 95521.
- Cook, R.C. and G.E. Lord. 1978. Identification of stocks of Bristol Bay sockeye salmon, Oncorhynchus nerka, by evaluating scale patterns with a polynomial discriminant method. Fishery Bulletin 76:415–423.
- Cook, R.C. 1983. Simulation and application of stock composition estimators. Canadian Journal of Fisheries and Aquatic Sciences 40:2113–2118.
- Goldwasser, L., M.S. Mohr, A.M. Grover, and M.L. Palmer-Zwahlen. 2001. The supporting databases and biological analyses for the revision of the Klamath Ocean Harvest Model. Available from M.S. Mohr, National Marine Fisheries Service, 110 Shaffer Road, Santa Cruz, CA 95060.
- Kimura, D.K. and Chikuni, S. 1987. Mixtures of empirical distributions: an iterative application of the age-length key. Biometrics 43:23–35.
- KRTAT (Klamath River Technical Advisory Team). 2007. Ocean abundance projections and prospective harvest levels for Klamath River fall Chinook, 2007 season. Available from U.S. Fish and Wildlife Service, 1829 South Oregon Street, Yreka, CA, 96097.

Mohr, M.S., A.M. Grover, M.L. Palmer-Zwahlen, and M. Burner. 2001. Klamath Ocean Harvest Model Revision Documentation Outline. Available from M.S. Mohr, National Marine Fisheries Service, 110 Shaffer Road, Santa Cruz, CA 95060.

Klamath River Technical Advisory Team Participants

California Department of Fish and Game Melodie Palmer-Zwahlen Wade Sinnen

Hoopa Valley Tribe George Kautsky Billy C. Matilton

KMZ Ocean Recreational Fishery Jerry Barnes

National Marine Fisheries Service Michael Mohr

Oregon Department of Fish and Wildlife
Craig Foster

U.S. Fish and Wildlife Service Joe Polos

Yurok Tribe Desma Williams

Acknowledgements

The Klamath River Technical Advisory Team thanks the following individuals for their expert assistance in compiling and reviewing the data for this report: Sara Borok, Jennifer Simon, Allen Grover, Mark Hampton, Dianna Chesney, and Morgan Knechte of the California Department of Fish and Game; Eric Logan of the Hoopa Valley Tribe; and Steve Gough of the U.S. Fish and Wildlife Service. The Yurok Tribe and Hoopa Valley Tribe performed the scale reading analysis for the Klamath and Trinity Rivers, respectively. The U.S. Fish and Wildlife Service provided scale reading assistance to the Yurok Tribe. Scale collections were provided by the California Department of Fish and Game, Hoopa Valley Tribe, U.S. Fish and Wildlife Service, U.S. Forest Service, and Yurok Tribe.

Table 1. Estimation and sampling methods used for the 2006 Klamath River fall Chinook run assessment.

Sampling Location	Estimation and Sampling Methods	Agency
Hatchery Spawners		
Iron Gate Hatchery (IGH)	Direct count. All fish examined for fin-clips, tags, marks. Systematic random sample \sim 10% biosampled for fork-length (FL), scales, sex, and all ad-clipped fish bio-sampled.	CDFG
Trinity River Hatchery (TRH)	Direct count. All fish bio-sampled for FL, fin-clips, marks, sex. Scales collected from ~20% of all fish by systematic random sampling of ad- and non-ad-clipped fish.	CDFG
Natural Spawners		
Salmon River Basin	Mark-recapture carcass estimate. River is surveyed twice weekly. Bio-data (scales, FLs, marks) collected from carcasses where possible, however, samplers tended to collect scales off larger fish.	CDFG,USFS,YT, KT, SRRC
Scott River Basin	Mark-recapture carcass estimate. River is surveyed twice weekly. Bio-data (scales, FLs, marks) collected from all fresh carcasses.	CDFG & Others
Shasta River Basin	Video count. Bio-data (scales, FLs, sex, marks) collected from carcasses upstream of video weir site and mortalities stranded on weir.	CDFG
Bogus Creek Basin	Video count above weir, direct carcass count below weir. Bio-data (scales, FLs, sex, fin-clips) in both areas by 1:4 systematic sampling.	CDFG
Klamath River mainstem (IGH to Shasta R)	Petersen mark-recapture carcass estimate. Total Run=Jack Estimate+Adult Estimate. River sections are surveyed once weekly. Bio-data (scales, FLs marks) collected from fresh carcasses.	USFWS, YT
Klamath River mainstem (Shasta R to Indian Cr)	Redd count based on weekly surveys. Adults = 2*redd counts; total run = adults/(1-%jacks estimated in IGH to Shasta reach).	USFWS
Klamath Tributaries (above Reservation)	Periodic redd surveys. Adults=2 * redd counts+live fish observed on last day surveyed. Total Run=adults/(1-%jacks estimated in IGH to Shasta reach).	USFS,CDFG
Yurok Reservation Tributaries	Only surveyed stream is Blue Creek. Jacks and adults estimated as the peak count of successive weekly snorkel surveys.	YT
Trinity River (mainstem above WCW)	Petersen mark-recapture run-size estimate; marks applied at WCW, recaptured at TRH. All fish bio-sampled (FL, marks, fin-clips). Scales taken at WCW in systematic random sample (1:2). Total natural escapement calculated from WCW run size minus TRH return minus recreational harvest.	CDFG, HVT
Trinity River (mainstem below WCW)	Redd surveys. Adults = $2 *$ redd counts. Total run = adults / % adults (natural escapement estimated above WCW).	HVT
Trinity Tributaries (above Reservation; below WCW)	Only stream surveyed in 2006 was Horse Linto Cr. Redd surveys. Adults = $2 * \text{redd}$ counts. Total run = adults / % adults (natural escapement above WCW).	USFS, CDFG
Hoopa Reservation Tributaries	Redd surveys. Adults = $2 * \text{redd}$ counts. Total run = adults / % adults (natural escapement estimated above WCW). No surveys completed in Pine Creek.	HVT
Recreational Harvest		
Klamath River (below Hwy 101 bridge)	Total harvest estimate based on weekly stratified, access point creel survey, on four randomly selected days per statistical week. No retention of adults (>55cm) after 15 August in 2006 regulations. Bio-data (scales, FLs, marks, fin-clips) collected during angler interviews.	CDFG
Klamath River (Hwy 101 to Weitchpec)	Total harvest estimate based on weekly stratified, access point creel survey, on two randomly selected days per statistical week. No retention of adults (>55cm) after 15 August in 2006 regulations. Bio-data (scales, FLs, marks, fin-clips) collected during angler interviews.	CDFG
Klamath River (Weitchpec to IGH)	No survey, used ratio of adult harvest in lower river to adult harvest in the upper river and ratio of jacks lower to upper (1999-2002 data). No retention of adults (>55cm) per 2006 regulations.	CDFG
Trinity River Basin (above WCW)	Adult harvest: No retention of adults (>55cm) per 2006 regulations, no WCW program tags recovered from presumed adults in the rec. fishery. Jack harvest: Estimated jack harvest rate from recovery of reward/non-reward tags (applied at WCW) multiplied by WCW jack run size.	CDFG
Trinity River Basin (below WCW)	Estimate based on a three randomly selected days per statistical week stratified (weekday/weekend day), roving creel survey. Bio-data (scales, FLs, marks, fin-clips) collected during angler interviews.	HVT
Tribal Harvest		
Klamath River (below Hwy 101)	Stratified (night/day), hourly effort and catch-per-effort surveys. Bio-data (FLs, scales, fin-clips, marks) collected during net harvest interviews.	YT
Klamath River (Hwy 101 to Trinity mouth)	Daily effort and catch-per-effort surveys. Bio-data (FLs, scales, fin-clips, marks) collected during net harvest interviews.	YT
Trinity River (Hoopa Reservation)	Two-stage effort and catch-per-effort surveys. Bio-data (FLs, scales, fin-clips) collected during net harvest interviews.	HVT
Fishery Dropoff Mortality Recreational Angling Dropoff Mortality 2.04%	Not directly estimated. Assumed rate relative to fishery impacts = .02; relative to fishery harvest = .02/(102).	KRTAT
Tribal Net Dropoff Mortality 8.7%	Not directly estimated. Assumed rate relative to fishery impacts = .08; relative to fishery harvest = .08/(108).	KRTAT
Hook and Release Adult Mortality (Rec.)	10%catch and release mortality applied to the estimated released adults (>55cm).	CDFG

Table 2. Scale sampling locations and numbers of scales used for the 2006 Klamath River Basin fall Chinook age-composition assessment.

		Scale	S		
	Unknown-age	Known-age			
Sampling Location	read ^{a/}	read ^{b/}	Not used ^{c/}	Total	Agency
Hatchery Spawners					
Iron Gate Hatchery (IGH)	1,229	318	5,805	7,352	CDFG
Trinity River Hatchery (TRH)	1,746	455	40	2,241	HVT
Natural Spawners					
Salmon River Carcass Survey	159	0	46	205	CDFG, USFS
Scott River Carcass Survey	1,162	0	33	1,195	CDFG, USFS
Shasta River Weir & Carcass	486	1	5	492	CDFG
Bogus Creek Weir	588	49	33	670	CDFG
Klamath River mainstem	531	0	9	540	USFWS
Upper Klamath River Tribs	0	0	20	20	USFS
Willow Creek Weir	413	31	13	457	CDFG, HVT
Lower Trinity River Carcass	29	0	0	29	HVT
Lower Trinity River Tribs	10	0	0	10	HVT
Recreational Harvest					
Lower Klamath River Creel	983	26	28	1,037	CDFG
Lower Trinity River Creel	33	2	0	35	HVT
<u>Tribal Harvest</u>					
Klamath River (below Hwy 101)	1,108	20	46	1,174	YT
Klamath River (Hwy 101 to Trinity R)	2,211	41	55	2,307	YT
Trinity River (Hoopa Reservation)	959	159	32	1,150	HVT
TOTAL	11,647	1,102	6,165	18,914	

a/ Scales from non-ad-clipped fish and ad-clipped fish without CWTs, mounted and read.

b/ Scales from all mounted and read ad-clipped CWT fish; non-random CWT fish used for validation but not age composition.

c/ Scales from non-ad-clipped fish, mounted and not read, or not mounted; scales from ad-clipped fish with no cwt, mounted and not read, or not mounted; scales from ad-clipped, CWT fish mounted and not read, or not mounted; non-randomly selected fish not read.

Table 3. Age-composition methods used for the 2006 Klamath River fall Chinook run assessment.

Sampling Location Age Composition Method

Hatchery Spawners

Iron Gate Hatchery (IGH)

Jack/adult structure from scale-age analysis.

Trinity River Hatchery (TRH)

Jack/adult structure from scale-age analysis.

Natural Spawners

Salmon River Basin Jacks ≤57 cm. Adults apportioned by scale-age analysis.

Scott River Basin Jack/adult structure from scale-age analysis.

Shasta River Basin Jacks ≤60 cm. Adults apportioned by scale-age analysis.

Bogus Creek Basin Jack/adult structure from scale-age analysis. Klamath River mainstem (IGH to Shasta R) Jack/adult structure from scale-age analysis.

Klamath River mainstem (Shasta R to Indian Cr) Surrogate: Klamath mainstem (IGH to Shasta R) age-structure.

Klamath Tributaries (above Reservation)

Surrogate: Unweighted average age structure from the Scott and Salmon

Rivers.

Yurok Reservation Tributaries Jacks estimated by direct observation. Adult Surrogate: Salmon and Scott

River age structure.

Trinity River (mainstem above WCW) Indirect estimation: WCW run (age structure from scales) minus age-

structured TRH return minus recreational harvest above WCW by age.

Trinity River (mainstem below WCW)

Surrogate: Mainstem natural spawners above WCW age-structure.

Trinity Tributaries (above Reservation)

Jack surrogate: jacks = adults * (%jacks / %adults) in natural escapement

above WCW. Adult surrogate: Mainstern natural spawners above WCW

age-structure.

Hoopa Reservation Tributaries

Jack surrogate: jacks = adults * (%jacks / %adults) in natural escapement

above WCW. Adult surrogate: Mainstem natural spawners above WCW

age-structure.

Recreational Harvest

Klamath River (below Hwy 101 bridge)

Jack/adult structure from scale-age analysis.

Klamath River (Hwy 101 to Weitchpec)

Jack/adult structure from scale-age analysis.

Klamath River (Weitchpec to IGH)

Surrogate: IGH adult age structure for adult component of the harvest.

Trinity River Basin (above WCW)

No adults harvested in 2006.

Trinity River Basin (below WCW)

Catch and release mortality of adults

Jack/adult structure from scale-age analysis.

Surrogate: basin-wide adult age composition.

Tribal Harvest

Klamath River (below Hwy 101)

Klamath River (Hwy 101 to Trinity mouth)

Trinity River (Hoopa Reservation)

Jack/adult structure from scale-age analysis.

Jack/adult structure from scale-age analysis.

Table 4a. 2006 Klamath River scale validation matrices.

Number		K	(nown Age	9		
		2	3	4	5	
	2	105	1	3	0	
Read	3	17	95	19	0	
Age	4	0	8	349	7	
	5	0	0	5	10	Total
-	Total	122	104	376	17	619
Percent	age	K	(nown Age	Э		
		2	3	4	5	
	2	0.861	0.010	0.008	0.000	
Read	3	0.139	0.913	0.051	0.000	
Age	4	0.000	0.077	0.928	0.412	
	5	0.000	0.000	0.013	0.588	
-	Γotal	1.00	1.00	1.00	1.00	

Table 4b. 2006 Trinity River scale validation matrices.

Number	<u>r</u>	K	ínown Age	Э		
		2	3	4	5	
	2	180	2	0	0	
Read	3	1	109	9	0	
Age	4	0	3	336	2	
	5	0	0	3	2	Total
·	Total	181	114	348	4	647
Percent	age	K	ínown Age	Э		
		2	3	4	5	
	2	0.994	0.018	0.000	0.000	
Read	3	0.006	0.956	0.026	0.000	
Age	4	0.000	0.026	0.966	0.500	
	5	0.000	0.000	0.009	0.500	
'	Total	1.00	1.00	1.00	0.00	

Table 5. Age composition of the 2006 Klamath River fall Chinook run.

			AGE		Total	Total
Escapement & Harvest	2	3	4	5	Adults	Run
Hatchery Spawners						
Iron Gate Hatchery (IGH)	2,386	4,215	7,251	138	11,604	13,990
Trinity River Hatchery (TRH)	4,076	2,576	5,244	97	7,918	11,994
Hatchery Spawner subtotal	6,462	6,791	12,495	235	19,522	25,984
Natural Spawners				_		
Salmon River Basin	791	698	580	0	1,278	2,069
Scott River Basin	1,953	1,759	1,247	1	3,007	4,960
Shasta River Basin	1,395	151	625	13	789	2,184
Bogus Creek Basin	764	1,398	1,929	41	3,368	4,132
Klamath River mainstem (IGH to Shasta R)	577	1048	1904	120	3,072	3,649
Klamath River mainstem (Shasta R to Indian Cr)	276	500	908	58	1,466	1,742
Klamath Tributaries (above Reservation)	739	659	506	0	1,165	1,904
Yurok Reservation Tributaries	<u>20</u>	65 6 070	<u>54</u>	<u>0</u>	119	139
Klamath Basin subtotal	6,515	6,278	7,753	233	14,264	20,779
Trinity River (mainstem above WCW)	7,740	2,637	12,450	421	15,508	23,248
Trinity River (mainstern above WeW)	63	2,007	101	3	126	189
Trinity Tributaries (above Reservation)	71	24	114	4	142	213
Hoopa Reservation Tributaries	191	<u>65</u>	307	<u>10</u>	382	573
Trinity Basin subtotal	8,065	2,747	12,972	438	16,158	24,223
Trimity Zuom oubtotal	0,000	_,	12,012	100	10,100	2 1,220
Natural Spawners subtotal	14,580	9,025	20,725	671	30,422	45,002
Total Spawner Escapement	21,042	15,816	33,220	906	49,944	70,986
Recreational Harvest						
Klamath River (below Hwy 101 bridge)	60	0	1	0	1	61
Klamath River (Hwy 101 to Weitchpec)	4,421	1	30	7	38	4,459
Klamath River (Weitchpec to IGH)						
, ,	721	/	11	()	18	739
LITHIUV KIVEL DASIII (ADOVE WCVV)	721 61	7 0	11 0	0 0	18 0	739 61
Trinity River Basin (above WCW) Trinity River Basin (below WCW)	61	0	0	0	0	61
Trinity River Basin (above WCW) Trinity River Basin (below WCW)	61 205					61 210
Trinity River Basin (below WCW)	61	0 5	0 0	0 0	0 5	61
Trinity River Basin (below WCW)	61 205	0 5	0 0	0 0	0 5	61 210
Trinity River Basin (below WCW) Subtotals Tribal Harvest Klamath River (below Hwy 101)	61 205	0 5	0 0	0 0	0 5	5, 530 2,756
Trinity River Basin (below WCW) Subtotals Tribal Harvest	61 205 5,468	0 5 13	0 0 42	0 0 7	0 5 62	5,530 5,530 2,756 3,636
Trinity River Basin (below WCW) Subtotals Tribal Harvest Klamath River (below Hwy 101)	61 205 5,468 30 240 145	0 5 13 688 965 736	1,944 2,300 3,327	94 132 100	0 5 62 2,726 3,396 4,163	5,530 5,530 2,756 3,636 4,308
Trinity River Basin (below WCW) Subtotals Tribal Harvest Klamath River (below Hwy 101) Klamath River (Hwy 101 to Trinity mouth)	61 205 5,468 30 240	0 5 13 688 965	0 0 42 1,944 2,300	0 0 7 94 132	0 5 62 2,726 3,396	61 210
Trinity River Basin (below WCW) Subtotals Tribal Harvest Klamath River (below Hwy 101) Klamath River (Hwy 101 to Trinity mouth) Trinity River (Hoopa Reservation)	61 205 5,468 30 240 145	0 5 13 688 965 736	1,944 2,300 3,327	94 132 100	0 5 62 2,726 3,396 4,163	5,530 5,530 2,756 3,636 4,308
Trinity River Basin (below WCW) Subtotals Tribal Harvest Klamath River (below Hwy 101) Klamath River (Hwy 101 to Trinity mouth) Trinity River (Hoopa Reservation) Subtotals Total Harvest	30 240 145 415	688 965 736 2,388	1,944 2,300 3,327 7,571	94 132 100 326	2,726 3,396 4,163 10,285	2,756 3,636 4,308
Trinity River Basin (below WCW) Subtotals Tribal Harvest Klamath River (below Hwy 101) Klamath River (Hwy 101 to Trinity mouth) Trinity River (Hoopa Reservation) Subtotals Total Harvest Totals	30 240 145 415 5,883	688 965 736 2,388	1,944 2,300 3,327 7,571 7,613	94 132 100 326	2,726 3,396 4,163 10,285	61 210 5,530 2,756 3,636 4,308 10,700 16,230
Trinity River Basin (below WCW) Subtotals Tribal Harvest Klamath River (below Hwy 101) Klamath River (Hwy 101 to Trinity mouth) Trinity River (Hoopa Reservation) Subtotals Total Harvest Totals Harvest and Escapement	61 205 5,468 30 240 145 415 5,883	0 5 13 688 965 736 2,388 2,401	1,944 2,300 3,327 7,571 7,613	94 132 100 326 333	2,726 3,396 4,163 10,285 10,347	61 210 5,530 2,756 3,636 4,308 10,700 16,230
Trinity River Basin (below WCW) Subtotals Tribal Harvest Klamath River (below Hwy 101) Klamath River (Hwy 101 to Trinity mouth) Trinity River (Hoopa Reservation) Subtotals Total Harvest Totals Harvest and Escapement Recreational Angling Dropoff Mortality 2.04%	61 205 5,468 30 240 145 415 5,883 26,925 112	0 5 13 688 965 736 2,388 2,401	1,944 2,300 3,327 7,571 7,613	94 132 100 326 333	2,726 3,396 4,163 10,285 10,347	61 210 5,530 2,756 3,636 4,308 10,700 16,230 87,216 188
Trinity River Basin (below WCW) Subtotals Tribal Harvest Klamath River (below Hwy 101) Klamath River (Hwy 101 to Trinity mouth) Trinity River (Hoopa Reservation) Subtotals Total Harvest Totals Harvest and Escapement	61 205 5,468 30 240 145 415 5,883	0 5 13 688 965 736 2,388 2,401	1,944 2,300 3,327 7,571 7,613	94 132 100 326 333	2,726 3,396 4,163 10,285 10,347	2,756 3,636 4,308
Trinity River Basin (below WCW) Subtotals Tribal Harvest Klamath River (below Hwy 101) Klamath River (Hwy 101 to Trinity mouth) Trinity River (Hoopa Reservation) Subtotals Total Harvest Totals Harvest and Escapement Recreational Angling Dropoff Mortality 2.04%	61 205 5,468 30 240 145 415 5,883 26,925 112	0 5 13 688 965 736 2,388 2,401	1,944 2,300 3,327 7,571 7,613	94 132 100 326 333	2,726 3,396 4,163 10,285 10,347	61 210 5,530 2,756 3,636 4,308 10,700 16,230 87,216 188

Appendix A: Estimation of escapement age-composition from a random sample containing known-age (CWT) and unknown read-age fish.

Denote the escapement at age as $\{N_a, a = 2, 3, 4, 5\}$, $N = \sum N_a$, and for the random sample of size (n+m) fish, denote the following quantities:

- known-age fish: number at age $\{n_a, a=2,3,4,5\}$, $n=\sum n_a$, $p_a=n_a/n$.
- unknown read-age fish: number at age $\{m_a, a=2,3,4,5\}$, $m=\sum m_a$, $r_a=m_a/m$.
- bias-corrected unknown read-age proportions: $\{r_a^*, a = 2, 3, 4, 5\}, r_A^* = r_3^* + r_4^* + r_5^*$
- age-2 proportion as estimated by size-frequency: s₂.
- Age 2–5 escapement by scales. Estimate N_a as the sample known-age a fish plus the unknown age portion of the escapement times the estimated age a proportion (biascorrected):

$$N_a = np_a + (N-n)r_a^*$$
, $a = 2,3,4,5$.

2. Age-2 escapement by size-frequency, age 3–5 escapement by scales. Estimate N_2 as the total escapement times the size-frequency based estimated age-2 proportion. Estimate N_a for a = 3, 4, 5 as the sample known-age a fish plus the unknown age portion of the adult escapement times the age a proportion among adults (bias-corrected):

$$N_{a} = \begin{cases} Ns_{2}, & a = 2\\ np_{a} + [N(1 - s_{2}) - n(1 - p_{2})](r_{a}^{*} / r_{A}^{*}), & a = 3, 4, 5 \end{cases}$$

Appendix B: Shasta River escapement age-composition 2006

Age structure of the Shasta River fall Chinook salmon run was determined using:

- 1. estimated total number of fish passing the video weir (jacks and adults combined),
- 2. proportion of males among adults in the carcass survey sample,
- 3. proportion of jacks among males in the carcasses at the weir site (wash-back samples),
- 4. adult age composition based on the pooled adult scales collected in the carcass survey and the weir wash-back samples.

A total of 2,184 fall Chinook salmon were estimated to have passed the weir in 2006. During the spawning ground surveys only 44 carcasses were sampled (22 male, 17 female, 5 unidentified). The KRTAT concluded that the number of scales collected during the spawning ground surveys were insufficient in themselves to apportion the run into age classes. A second set of 457 scales collected from carcasses at the weir site yielded a sex composition of 430 males and 27 females. Due to the apparent bias toward the male component of the run, these data were also considered insufficient in themselves for apportioning the run into age classes.

The initial method used to partition the run into age classes, which assumed a 50:50 sex ratio for the run, resulted in a very skewed proportion of males among adults (17.3%). After considerable review, the KRTAT elected to partition the run using data collected from both the carcass survey and wash-back sample as follows. The proportion of males among adults, P(M|A), was estimated using the carcass survey data. Of the 22 males, 7 were determined to be jacks based on length (\leq 60 cm FL) and after removing these fish from the sample, 46.9% of the remaining adults were males (15 of 32). The proportion of jacks (\leq 60 cm FL) among males, P(J|M), was estimated from the wash-back sample to be 79.0%. The equations below were then used to partition the total

run (N) into jacks (J) and adults (A), and following that the age composition of the adults was estimated from the pooled samples of scales.

1. Estimate the proportion of males in the run:

$$P(M) = \frac{P(M \mid A)}{1 - P(J \mid M)[1 - P(M \mid A)]} = \frac{0.46875}{1 - 0.79029[1 - 0.46875]} = 0.80797$$

based on the following relationship:

$$P(M \mid A) = \frac{P(M,A)}{P(A)} = \frac{P(M) - P(J)}{1 - P(J)} = \frac{P(M) - P(J \mid M)P(M)}{1 - P(J \mid M)P(M)}.$$

2. Estimate the proportion of jacks in the run:

$$P(J) = P(M) \times P(J \mid M) = (0.80797)(0.79029) = 0.63853.$$

3. Estimate the jack run:

$$J = N \times P(J \mid M) = (2,184)(0.63853) = 1,395.$$

4. Estimate the adult run:

$$A = N - J = 789.$$

Appendix C: River recreational fishery adult impacts 2006

The approach for estimating adult age-specific impacts for the 2006 jack-only river recreational fishery (catch-and-release of adults) was as follows:

1. Estimate the contact rate of adults, c, based on the observed harvest rate of jacks, $h_{J,2006}$, and the ratio of the average harvest rate of adults, \overline{h}_A , to that for jacks, \overline{h}_J , over the 1978–2005 period:

$$c = \left(\frac{\overline{h}_A}{\overline{h}_I}\right) h_{J,2006} = \left(\frac{0.068}{0.226}\right) (0.20197) = 0.06077.$$

2. Estimate the river run of adults, *R*, including recreational impacts, *l*:

$$R = \frac{(R-I) + H(1-v)}{1 - c(d+v)} = \frac{61,185 + 62(1-0.1)}{1 - 0.06077(0.02041 + 0.1)} = 61,630$$

based on the relationship:

$$R = (R-I) + I = (R-I) + (H+D+V) = (R-I) + [H+Cd+(C-H)v]$$

= (R-I) + Rc(d+v) + H(1-v)

where, referring to the expressions defined below, H is the retained harvest, D is the dropoff mortality, V is the catch-and-release mortality, C is the contacts, d is the dropoff mortality rate (assumed equal to 0.02/[1-0.02]=0.02041), and v is the catch-and-release mortality rate (assumed equal to 0.1).

3. Estimate the number of contacts as the river run times the contact rate:

$$C = R \times c = 61,630 \times 0.06077 = 3,745.$$

4. Estimate the dropoff mortality as the contacts times the dropoff mortality rate:

$$D = C \times d = 3,745 \times 0.02041 = 76.$$

5. Estimate the catch-and-release mortality as the released fish (contacts – retained harvest) times the catch-and-release mortality rate:

$$V = (C - H) \times v = (3,745 - 62) \times 0.1 = 368.$$

6. Estimate the adult impacts: retained harvest + dropoff mortality + catch-and-release mortality.

$$I = H + D + V = 62 + 76 + 368 = 507.$$

7. Apportion the adult retained harvest by age using scales, and the adult dropoff and catchand-release mortality using the adult overall river run age composition.

Appendix D. Klamath River – 2006 details.

Iron Gate Hatchery

A systematic random bio-sample was obtained from every tenth Chinook returning to IGH in 2006. Additionally every ad-clip fish not occurring in the random sample was bio-sampled (length and scale collected with CWT) as nonrandom. However, 222 heads recovered 4 October through 12 October from adipose-fin-clipped fish were misplaced and unavailable for scale age validation. The Team agreed that notwithstanding these missing data, the remaining CWT ages were sufficient for validation of the IGH scales.

A total of 1,547 scales were used and 318 were from known-age, CWT fish. All ages were apportioned using scale analysis.

Bogus Creek

Total run was estimated by videography and biological samples were obtained from a systematic random sample of 1:4. Additionally, biological data were obtained from a non-random collection of every ad-clipped fish encountered. There were a total of 637 scales used of which 49 were from known-age, CWT fish. All age classes were apportioned by scale-based analysis.

Shasta River

Total run estimated by videography while bio samples were collected from carcass surveys and fish that washed back onto the counting weir. Due to biases in data collected in the wash-back samples at the weir, the KRTAT determined that this was not a suitable sample to apportion the total run into age classes. The KRTAT determined that scale samples collected from fish >60 cm fork-length in Shasta River were representative of the adult run component only. The proportion of age-2 fish was estimated by utilizing (1) the estimated total number of fish passing the video weir (jacks and adults combined), (2) the proportion of males among adults in the carcass survey sample, (3) the proportion of jacks among males in the weir wash-back sample, and (4) the adult age composition based on the pooled adult scales collected in the carcass survey and the weir wash-back samples (see Appendix B for details). A total of 487 scales were used of which one was from a known-age, CWT fish.

Scott River

Total escapement estimated through carcass mark-recapture. There were a total of 1,162 scales used of which none were from known-age fish. Scale age proportions were used to assign all ages. The Team verified that the aged scales were a representative sub-sample of the total number of carcasses seen during the spawner surveys.

Salmon River

Total escapement was estimated by carcass mark-recapture. Scale collection bias resulted in a poor representation of jacks. However, length frequencies were based on measurements of all carcasses, hence length frequencies were used to delineate age-two fish while scales were used to apportion adult age classes only. A total of 159 scales were used, none of which were from known-age, CWT fish.

Klamath River Tributaries

The adult run estimate was obtained by multiplying total redd counts by two and adding the total of live adult fish observed during the final survey in each tributary. Jacks were estimated using the surrogate jack proportions observed in the IGH to Shasta River reach of the Klamath mainstem. Due to insufficient collection of scales, these tributaries were apportioned by age according to the un-weighted average proportions resulting from analyses of the Salmon and Scott rivers. (Shasta River was not used in this composite due to the concern over the washback samples used to age that sub-system).

Klamath River Mainstem

For the upper reach (IGH to Shasta River section), 531 scales were used none of which were from known-age, CWT fish. Scales were used to apportion all age-classes. In the lower reach (Shasta to Indian Creek section), redds were multiplied by two to estimate the adult run. Jacks were then added by their proportional representation to adults observed in the IGH to Shasta River reach to estimate the total run. Finally, the total run was then reapportioned to all age classes using the age proportions from the upper reach.

Lower Klamath River Creel

The total harvest was estimated by creel census. For both sub-areas (above/below Highway 101) scale age proportions were used to apportion all ages for the estimated harvest totals. A total of 1,009 scales were used of which 26 were taken from known-age, CWT fish.

Upper Klamath River Recreational Fishery

There was no creel census in this sub-area in 2006. Separate ratio estimators for jacks and adults were used to estimate the upper Klamath River recreational harvest. Harvest data were available from creel census of the lower and upper river fisheries in 1999 through 2002. The ratios of average harvest in the upper versus lower area in these years were applied to the 2006 jack and adult harvest in the lower area fishery to estimate their respective harvest in the upper area. Adult age proportions were assigned using the scale-age compositions estimated for IGH.

Yurok Tribal Estuary Fishery (Klamath mouth to Hwy 101)

Yurok harvest in the estuary area was estimated by hourly stratified effort and catch-per-effort methods. The harvest total was allocated by age using scales obtained in this fishery. A total of 1,128 scales were used of which 20 were from known-age, CWT fish.

Yurok Tribal Above 101

Yurok harvest in this sub area was estimated by daily effort and catch-per-effort estimation. Yurok harvest in the mid and upper-Klamath area was segregated into jacks and adults based upon scale ageing. A total of 2,252 scales were used of which 41 came from known-age, CWT fish.

Blue Creek

Snorkel surveys were used to produce the total escapement estimate. Visual counts yielded 20 jacks and 119 adults. Adult age composition was approximated using the un-weighted composite age structure of Salmon and Scott Rivers as a surrogate.

Klamath Basin Recreational Fishery Adult Non-Catch Mortality

Estimates of basin wide adult drop-off and catch-and-release mortality associated with the 2006 jack-only recreational fishery were derived based on an estimated adult contact rate of 6.1%, and assumed drop-off and catch-and-release mortality rates of 2% and 10%, respectively (see Appendix C for details).

Appendix E. Trinity River – 2006 details.

Trinity River Hatchery (TRH)

Sampling for scales was conducted in a systematic (1:5) random manner. Ad-clipped and non-Ad-clipped fish were selected with equal probability. A total of 2,201 scales were aged of which 455 scales came from CWT fish. Scale samples were used to apportion the total hatchery return into age classes.

Upper Trinity River Recreational Harvest

The general method for estimating the upper Trinity recreational harvest depends on the application of reward/non-reward program tags at the Willow Creek Weir (WCW) and subsequently returned by anglers. The CWT "run-size" analysis allocated proportions of tag codes observed at TRH to natural spawning areas and the recreational fishery occurring in the river reach between TRH and WCW. In 2006, CDFG reported a 0.0% harvest rate on adult Chinook based on no return of adult program tags. This result is consistent with the expectation that in 2006 there would be no adults retained in the recreational fishery as regulations prohibited their retention (see Appendix C for associated non-catch mortality). However, there were sufficient recoveries of program tags applied to jacks at WCW to estimate a jack harvest rate. This calculation produced a jack harvest rate of 0.5%, yielding a total harvest of 61 age-two Chinook. There were no scales recovered from this fishery as no creel census was implemented in 2006.

Lower Trinity River Creel

A total of 35 scales were aged of which two were from known-age fish. One of the 35 scales was aged as an age-3 fish, the rest were all age-2 fish. Regulations prohibited retention of adult chinook (>55cm) (see Appendix C for associated non-catch mortality). Total harvest was apportioned by age using the scale-age proportions.

Upper Trinity Natural Escapement

The methods used for ageing the Trinity River run above WCW are similar to those used in the estimation of the population, apportioned to three general recovery areas: Trinity River Hatchery, Trinity upper-basin natural spawning escapement, and recreational harvest. At WCW a systematic random sampling (1:2) of all fish examined produces a collection of scales for program marked fish, some of which are Ad-clipped (Trinity River Hatchery origin). Validation of WCW scales is accomplished with known-age fish later recovered at either TRH or natural spawning areas which are also referenced to WCW by a unique "program tag" (spaghetti tag applied at WCW with unique identifying number). A total of 444 scales were used in estimation of the WCW run including 31 CWT records subsequently recovered at TRH.

The age-structure for fish passing above WCW was estimated using these scales and known-age fish recovered in upper river areas which are linked to the scale samples. Next, specific age structures are estimated for fish returning to TRH and the recreational fishery. These proportions are applied to the total hatchery escapement and estimated fishery harvest respectively providing totals by age within area. These totals are next deducted from the WCW run apportioned by age resulting in an age-structure for the natural escapement in the upper Trinity River.

Lower Trinity River Natural Escapement

The Lower Trinity natural escapement estimation area included total spawners estimated in both main-stem and tributary sub-areas. A total of 29 scales were collected from the mainstem, and

10 scales were collected from the tributary sub-area. None of these scales were associated with a CWT recovery. The single scale recovered in the tributary sub-area was from Hoopa tributaries. The Team concluded that scale collections were inadequate to provide age distributions for both sub-areas for all ages. Ages were apportioned using the "Upper Trinity Natural Escapement" proportions as a surrogate.

Hoopa Valley Tribal Harvest

Hoopa Valley Tribal harvest is a composite of the gillnet and hook-and-line fisheries prosecuted by Tribal members. A total of 1,118 scales were aged of which 159 were from known-age fish. The total harvest was apportioned by age using these scale-age proportions.

Appendix F. 2006 Klamath scale age analysis

		AGE 2	AGE 3	AGE 4	AGE 5	TOTAL	
BOGUS		98	211	272	7	588	
LRC		896	79	7	1	983	
IGH		189	404	621	15	1229	
SALMON		39	66	54	0	159	
SCOTT		400	455	303	4	1162	
SHASTA		336	75	73	2	486	
YTFP EST		19	295	761	33	1108	
YTFP M&U		144	632	1369	66	2211	
MAINSTEM		76	165	276	14	531	
IVI) (II VO I EIVI		2197	2382	3736	142	8457	
Unknown scal	es correc					TOTAL	
BOGUS		AGE 2 0.186	AGE 3 0.339	AGE 4 0.466	AGE 5 0.010	<u>TOTAL</u> 1.0	
	p	0.186	0.339	0.466	0.010		
LRC IGH	p	0.992	0.000	0.007	0.002	1.0 1.0	
SALMON	p	0.170	0.305	0.328	0.009	1.0	
	p						
SCOTT	p	0.394	0.355	0.251	0.000	1.0	
SHASTA	p	0.801	0.038	0.157	0.003	1.0	
YTFP EST	p	0.011	0.251	0.704	0.035	1.0	
YTFP M&U	p	0.067	0.268	0.629	0.037	1.0	
MAINSTEM	р	0.158	0.287	0.522	0.033	1.0	
Known CWT a	ges						#CWTS
		AGE 2	AGE 3	AGE 4	AGE 5	TOTAL	UNKNOWN
BOGUS		7	15	27	1	50	8
_RC		24	1	0	0	25	1
IGH		78	82	280	15	455	231
SALMON		0	0	0	0	0	0
SCOTT		0	0	0	0	0	0
SHASTA		0	0	1	0	1	0
YTFP EST		1	7	35	0	43	7
YTFP M&U		1	7	53	1	62	14
MAINSTEM		0	0	1	0	1	0
Bogus1		0	3	7	1	11	1
Bogus2		7	12	20	0	39	7
LRC - lo		0	0	0	0	0	0
LRC - mid		24	1	0	0	25	1
YTFP MID		0	1	18	0	19	6
YTFP UP		1	6	35	1	43	8

Appendix G. 2006 Trinity scale age analysis

WCW = Willow (no cwt	2	Cwt Age 3	4	5	Total	LOWTRINREC :	= Lower Trin	ity Recreation	al 2	Cwt Age	3 4	5	Total
	unreadable	12	0	0	1	0	13		unreadable	0	0		0 0	0	0
	2	144	6	0	0	0	150		2	32	2	(0	0	34
Scale	3	65	0	4	0	0	69	Scale	3	1	0			0	1
Ages	4	199	0	0	21	0	220	Ages	4	0	0			0	0
31	5	5	0	0	0	0	5	2	5	0	0	(0	0
413		425	6	4	22	0	457	33		33	2	(0	0	35
HUPAHARV = H	-	larvest plus Tribal	Hook-and-Line 0	Cwt Age 3	4	5	Total	TRH = Trinity R	iver Hatcher	y no cwt	2	Cwt Age	R 4	5	Tota
	unreadable	28	0	0	4	0	32		unreadable		2		1 7	0	40
	2	36	2	0	0	0	38		2	599	170	:	2 0	0	771
Scale	3	176	0	28	0	0	204	Scale	3	399	1	7		0	486
Ages	4	729	0	1	128	0	858	Ages	4	735	0		2 187	2	926
159	5	18	0	0	0	0	18	455	5	13	0		3	2	18
959		987	2	29	132	0	1150	1746		1776	173	82	2 206	4	2241
	S = Lower Trinity		2	Cwt Age	4	5		UPKLAMREC U	lpper Klamat	h Recreationa no cwt	I 2	Cwt Age	3 4	5	Total
includes 3 scales from Ho	unreadable	o cwt	0	0	0	0	0	not sampled in U6	unreadable				3 4		TOTAL
	2	2	0	0	0	0	0		2						
Scale	3	5	0	0	0	0	0	Scale	3						
Ages	4	3	0	0	0	0	0	Ages	4	!					
0	5	0	0	0	0	0	0	0	5	L					
10		10	0	0	0	0	10	0		0	0	(0	0	0
LOWTRINMAINS	STEM = Lower Tri			Cwt Age		-		TribsAboveHoo	ра			Cwt Age		_	T-4-
	unreadable	no cwt	<u>2</u> 0	3	0	5	Total t	NO DATA	unreadable	no cwt	2		3 4	5	Tota
	2	4	0	0	0	0	4		unreadable 2						
Scale	3	8	ő	0	0	ő	8	Scale	3						
Ages	4	14	0	0	0	0	14	Ages	4	!					
- 0	5	3	0	0	0	0	3	0	5						
			0	0	0	0	29	0		0	0	(0	0	0
29		29	O	ŭ	Ü										
		OOLED data from	all areas: Scale a	ge-CWT age matrix.					B)	no motely of	ranartiana -f -	alumn auma			
	(POOLED data from Includes only fish	all areas: Scale a	ge and CWT known	age.)	5				ge matrix of p	roportions of c		3 4	5	
	(OOLED data from	all areas: Scale a			5				ge matrix of p	roportions of c 2 0.9945		3 4 5 0.0000	5 0.0000	
	(POOLED data from Includes only fish	all areas: Scale a with both scale a 2	ge and CWT known a	age.)	5 0 0				ge matrix of po 2 3	0.9945	0.017	0.0000	0.0000	
	(POOLED data from Includes only fish	all areas: Scale a with both scale ag	ge and CWT known 3	age.)	0				ge matrix of pi 2 3 4	2	;	0.0000 0.0259		
	(VAL	POOLED data from Includes only fish	all areas: Scale a with both scale ag	ge and CWT known a 3 2 109	age.) 4 0 9	0	647			ge matrix of pi 2 3 4 5	0.9945 0.0055	0.017 0.956	0.0000 0.0259 0.9655	0.0000 0.0000	
29	(VAL 4x4	POOLED data from Includes only fish IDATION MATRIX 2 3 4 5	all areas: Scale a with both scale at 2 180 1 0	ge and CWT known : 3 2 109 3	age.) 4 0 9 336	0				ge matrix of pi 2 3 4 5	0.9945 0.0055 0.0000	0.0179 0.956 0.026	0.0000 0.0259 0.9655	0.0000 0.0000 0.5000	
29 Corrected Scale	(VAL 4x4 e age proportion v	POOLED data from Includes only fish IDATION MATRIX 2 3 4 5 vectors for scale-a	all areas: Scale a with both scale as 2 180 1 0 0 0 ged 2 - 5 fish.	ge and CWT known 3 2 2 109 3 0	4 0 9 336 3	0		S.	Scale-CWT a	2 3 4 5	2 0.9945 0.0055 0.0000 0.0000	0.017 ³ 0.956 0.026 0.0000	0.0000 0.0259 0.9655	0.0000 0.0000 0.5000	
29 Corrected Scale known scales	(VAL 4x4	POOLED data from Includes only fish IDATION MATRIX 2 3 4 5	all areas: Scale a with both scale at 2 180 1 0	ge and CWT known : 3 2 109 3	age.) 4 0 9 336	0				2 3 4 5	2 0.9945 0.0055 0.0000 0.0000	0.017: 0.956 0.026: 0.000(5 0.0000 1 0.0259 3 0.9655 0 0.0086	0.0000 0.0000 0.5000	
Corrected Scale known scales known scales	(VAL 4x4 e age proportion v 31	POOLED data from Includes only fish IDATION MATRIX 2 3 4 5 rectors for scale-a 159	all areas: Scale a with both scale as 2 180 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ge and CWT known 3 2 109 3 0	4 0 9 336 3	0		0	Scale-CWT a	2 3 4 5	2 0.9945 0.0055 0.0000 0.0000	0.017: 0.956 0.026; 0.0000 rix for ages 2,3,4,5 .	5 0.0000 1 0.0259 3 0.9655 0 0.0086	0.0000 0.0000 0.5000	
Corrected Scale known scales known scales	4x4 e age proportion v 31 413 Villow Creek Weir WCW	POOLED data from Includes only fish IDATION MATRIX 2 3 4 5 rectors for scale-a 159 959	all areas: Scale a with both scale as 180 1 0 0 0 ged 2 - 5 fish. 2 33 Lower Trinity	ge and CWT known: 3 2 109 3 0 455 1746	4 0 9 336 3 29 Lower Trinity CARCASS	0 0 2 2	647	0 10	Scale-CWT a	2 3 4 5	2 0.9945 0.0055 0.0000 0.0000 Correction Mat (Inverse of Sca	0.017: 0.956 0.026; 0.0000 rix for ages 2,3,4,5 .	5 0.0000 1 0.0259 3 0.9655 0 0.0086	0.0000 0.0000 0.5000 0.5000 0.5000	
Corrected Scale known scales hknown scales	e age proportion v 31 413 Villow Creek Weir WCW 0.3480	POOLED data from Includes only fish IDATION MATRIX 2 3 4 5 rectors for scale-a 159 959 Hoopa Tribal NET HARVEST 0.0347	all areas: Scale a with both scale ag 2 180 1 0 0 0 ged 2 - 5 fish. 2 33 Lower Trinity REC HARVEST 0.9748	ge and CWT known 3 2 2 109 3 0 0 455 1746 TRH HATCHERY 0.3410	age.) 4 0 9 336 3 0 29 Lower Trinity CARCASS 0.1338	Upper Trinity	Upper Trin Nat Escape 0.3329	0 10 Lower Trin Tribs 0.1920	Scale-CWT a	2 3 4 5	2 0.9945 0.0055 0.0000 0.0000 Correction Mat (Inverse of Sca 2 1.0057 -0.0058	0.017: 0.096: 0.026: 0.000i rix for ages 2,3,4,5 . ile-CWT age proport	ion matrix.) 4 0.0059 0.0086	0.0000 0.0000 0.5000 0.5000 5.5000 5.5000 5.5000	
Corrected Scale known scales iknown scales W	4x4 e age proportion v 31 413 Villow Creek Weir WCW 0.3480 0.1494	POOLED data from Includes only fish IDATION MATRIX 2 3 4 5 rectors for scale-as 159 959 Hoopa Tribal NET HARVEST 0.0347 0.1709	all areas: Scale a with both scale as 2 180 1 0 0 0 ged 2 - 5 fish. 2 33 Lower Trinity REC HARVEST 0,9748 0,0252	ge and CWT known: 3 2 109 3 0 455 1746 TRH HATCHERY 0.3410 0.2255	age.) 4 0 9 336 3 0 29 Lower Trinity CARCASS 0.1338 0.2772	Upper Trinity	Upper Trin Nat Escape 0.3329 0.1134	0 10 Lower Trin Tribs 0.1920 0.5140	Scale-CWT a	2 3 4 5	2 0.9945 0.0055 0.0000 0.0000 Correction Mat (Inverse of Sca 2 1.0057 -0.0058 0.0002	0.017 0.096 0.026 0.0000 rrix for ages 2,3,4,5 . alle-CWT age proport -0.018 1.046 -0.028	ion matrix.) 3 4 5 0.0008 6 0.0008	0.0000 0.0000 0.5000 0.5000 0.5000	
Corrected Scale known scales known scales	4x4 e age proportion v 31 413 Villow Creek Weir WCW 0.3480 0.1494 0.4868	POOLED data from Includes only fish IDATION MATRIX 2 3 4 5 rectors for scale-a; 159 959 Hoopa Tribal NET HARVEST 0.0347 0.1709 0.7701	all areas: Scale a with both scale ag 2 180 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ge and CWT known 3 2 2 109 3 0 1746 1746 TRH HATCHERY 0.3410 0.2255 0.4259	age.) 4 0 9 336 3 0 29 Lower Trinity CARCASS 0.1338 0.2772 0.3888	Upper Trinity	Upper Trin Nat Escape 0.3329 0.1134 0.5355	0 10 Lower Trin Tribs 0.1920 0.5140 0.2940	Scale-CWT a	2 3 4 5	2 0.9945 0.0055 0.0000 0.0000 Correction Mat (Inverse of Sca 2 1.0057 -0.0058	0.017: 0.096: 0.026: 0.000i rix for ages 2,3,4,5 . ile-CWT age proport	ion matrix.) 3 4 5 0.0008 6 0.0008	0.0000 0.0000 0.5000 0.5000 5.5000 5.5000 5.5000	
Corrected Scale known scales iknown scales W	4x4 e age proportion v 31 413 Villow Creek Weir WCW 0.3480 0.1494	POOLED data from Includes only fish IDATION MATRIX 2 3 4 5 rectors for scale-as 159 959 Hoopa Tribal NET HARVEST 0.0347 0.1709	all areas: Scale a with both scale as 2 180 1 0 0 ged 2 - 5 fish. 2 33 Lower Trinity REC HARVEST 0.9748 0.0252 0.0000 0.0000	ge and CWT known: 3 2 109 3 0 455 1746 TRH HATCHERY 0.3410 0.2255	age.) 4 0 9 336 3 0 29 Lower Trinity CARCASS 0.1338 0.2772	Upper Trinity	Upper Trin Nat Escape 0.3329 0.1134 0.5355 0.0181	0 10 Lower Trin Tribs 0.1920 0.5140 0.2940 0.0000	Scale-CWT a	2 3 4 5	2 0.9945 0.0055 0.0000 0.0000 Correction Mat (Inverse of Sca 2 1.0057 -0.0058 0.0002	0.017 0.096 0.026 0.0000 rrix for ages 2,3,4,5 . alle-CWT age proport -0.018 1.046 -0.028	ion matrix.) 3 4 5 0.0008 6 0.0008	0.0000 0.0000 0.5000 0.5000 0.5000	
Corrected Scale known scales hknown scales	4x4 e age proportion v 31 413 Villow Creek Weir WCW 0.3480 0.1494 0.4868	POOLED data from Includes only fish IDATION MATRIX 2 3 4 5 rectors for scale-a; 159 959 Hoopa Tribal NET HARVEST 0.0347 0.1709 0.7701	all areas: Scale a with both scale ag 2 180 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ge and CWT known 3 2 2 109 3 0 1746 1746 TRH HATCHERY 0.3410 0.2255 0.4259	age.) 4 0 9 336 3 0 29 Lower Trinity CARCASS 0.1338 0.2772 0.3888	Upper Trinity	Upper Trin Nat Escape 0.3329 0.1134 0.5355	0 10 Lower Trin Tribs 0.1920 0.5140 0.2940	Scale-CWT a	2 3 4 5	2 0.9945 0.0055 0.0000 0.0000 Correction Mat (Inverse of Sca 2 1.0057 -0.0058 0.0002	0.017 0.096 0.026 0.0000 rrix for ages 2,3,4,5 . alle-CWT age proport -0.018 1.046 -0.028	ion matrix.) 3 4 5 0.0008 6 0.0008	0.0000 0.0000 0.5000 0.5000 0.5000	
Corrected Scale known scales hknown scales	4x4 e age proportion v 31 413 Villow Creek Weir WCW 0.3480 0.1494 0.4868 0.0158	POOLED data from Includes only fish IDATION MATRIX 2 3 4 5 rectors for scale-a; 159 959 Hoopa Tribal NET HARVEST 0.0347 0.1709 0.7701	all areas: Scale a with both scale as 2 180 1 0 0 ged 2 - 5 fish. 2 33 Lower Trinity REC HARVEST 0.9748 0.0252 0.0000 0.0000	ge and CWT known 3 2 2 109 3 0 1746 1746 TRH HATCHERY 0.3410 0.2255 0.4259	age.) 4 0 9 336 3 0 29 Lower Trinity CARCASS 0.1338 0.2772 0.3888	Upper Trinity	Upper Trin Nat Escape 0.3329 0.1134 0.5355 0.0181	0 10 Lower Trin Tribs 0.1920 0.5140 0.2940 0.0000	Scale-CWT a	2 3 4 5	2 0.9945 0.0055 0.0000 0.0000 Correction Mat (Inverse of Sca 2 1.0057 -0.0058 0.0002	0.017 0.096 0.026 0.0000 rrix for ages 2,3,4,5 . alle-CWT age proport -0.018 1.046 -0.028	ion matrix.) 3 4 5 0.0008 6 0.0008	0.0000 0.0000 0.5000 0.5000 0.5000	
Corrected Scale known scales whown scales Age 2 3 4 5 UNKNOWN CWT	4x4 e age proportion v 31 413 Villow Creek Weir WCW 0.3480 0.1494 0.4868 0.0158	POOLED data from Includes only fish IDATION MATRIX 2 3 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	all areas: Scale a with both scale as 2 180 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ge and CWT known 3 2 109 3 0 455 1746 TRH HATCHERY 0.3410 0.2255 0.4259 0.0075	age.) 4 0 9 336 3 29 Lower Trinity CARCASS 0.1338 0.2772 0.3888 0.2002 1 0	Upper Trinity REC HARVEST	Upper Trin Nat Escape 0.3329 0.1134 0.5355 0.0181 1 0 (Estimated)	0 10 Lower Trin Tribs 0.1920 0.5140 0.2940 0.0000 kimura used	Scale-CWT a	2 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 0.945 0.0945 0.0000 0.0000 0.0000 Correction Mat (Inverse of Sca 2 1.0057 -0.0058 0.0002 0.0000 WCW scales	0.017 0.096 0.026 0.0000 rrix for ages 2,3,4,5 . alle-CWT age proport -0.018 1.046 -0.028	ion matrix.) 3 4 5 0.0008 6 0.0008	0.0000 0.0000 0.5000 0.5000 0.5000 0.5000	
Corrected Scales known scales nknown scales 4ge 2 3 4 5 UNKNOWN CWT	4x4 e age proportion v 31 413 Villow Creek Weir WCW 0.3480 0.1494 0.4868 0.0158 1 TTS	POOLED data from Includes only fish IDATION MATRIX 2 3 4 4 5 5 POOLED data from Includes only fish IDATION MATRIX 2 POOLED data from Includes only fish IDATION MATRIX 2 POOLED data from Includes only fish IDATION MATRIX 0.0347 0.1709 0.7701 0.0243 1 9 Hoopa Tribal	all areas: Scale a with both scale as with both scale as 2 180 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ge and CWT known 3 2 2 109 3 0 0 455 1746 TRH HATCHERY 0.3410 0.2255 0.4259 0.0075 1 40 TRH	age.) 4 0 9 336 3 0 29 Lower Trinity CARCASS 0.1338 0.2772 0.3888 0.2002 1 0 Lower Trinity	Upper Trinity REC HARVEST 0 (Estimated) Upper Trinity	Upper Trin Nat Escape 0.3329 0.1134 0.5355 0.0181 1 0 (Estimated) Upper Trinity	0 10 Lower Trin Tribs 0.1920 0.5140 0.2940 0.0000 kimura used 0	Scale-CWT a	2 3 4 5 5 S S S S S S S S S S S S S S S S S	2 0.9945 0.0055 0.0000 0.0000 0.0000 Correction Mat (Inverse of Sca 2 1.0057 -0.0058 0.0002 0.0000 WCW scales teted proportions o 413 unknown	i: 0.017: 0.956	ion matrix.) 3 4 5 0.0005 3 0.9655 0 0.0086 ion matrix.) 3 4 5 0.0005 3 1.0458 5 -0.0180	0.0000 0.0000 0.5000 0.5000 0.5000 0.0005 0.0283 -1.0458 2.0180	
Corrected Scale known scales known scales Age 2 3 4 5 UNKNOWN CWT	4x4 e age proportion v 31 413 Villow Creek Weir 0.3480 0.1494 0.4868 0.0158 1 TTS Villow Creek Weir WCW	POOLED data from Includes only fish IDATION MATRIX 2 3 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	all areas: Scale a with both scale as 2 180 1 0 0 0 ged 2 - 5 fish. 2 33 Lower Trinity REC HARVEST 0.0000 kimura used 1 Lower Trinity REC HARVEST	ge and CWT known 3 2 2 109 3 0 0 455 1746 TRH HATCHERY 0.3410 0.2255 0.4259 0.0075 1 40 TRH HATCHERY	age.) 4 0 9 336 3 0 29 Lower Trinity CARCASS 0.1338 0.2772 0.3888 0.2002 1 0 Lower Trinity	Upper Trinity REC HARVEST	Upper Trin Nat Escape 0.3329 0.1134 0.5355 0.0181 0 (Estimated) Upper Trinity Natural	0 10 Lower Trin Tribs 0.1920 0.5140 0.2940 0.0000 kimura used	Scale-CWT a	2 2 3 4 4 5 5 2 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6	2 0.9945 0.0945 0.0005 0.0000 0.0000 Correction Mat (Inverse of Sca 2 1.0058 0.0002 0.0000 WCW scales ted proportions o 413 unknown WCW nocwts	in the formula of the control of the	ion matrix.) 3	0.0000 0.0000 0.5000 0.5000 0.5000 0.2005 0.0283 -1.0458 2.0180	
Corrected Scale known scales hknown scales Age 2 3 4 5 UNKNOWN CWT	e age proportion v 31 413 Villow Creek Weir 0.3480 0.1494 0.4868 0.0158 1 TTS Villow Creek Weir WCW 6	POOLED data from Includes only fish IDATION MATRIX 2 3 4 5 5 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	all areas: Scale a with both scale as 2 180 1 0 0 0 ged 2 - 5 fish. 2 33 Lower Trinity REC HARVEST 0.0252 0.0000 kimura used 1 Lower Trinity REC HARVEST 9	ge and CWT known: 3 2 109 3 0 455 1746 TRH HATCHERY 0.3410 0.2255 0.4259 0.0075 1 40 TRH HATCHERY 854	age.) 4 0 9 336 3 0 29 Lower Trinity CARCASS 0.1338 0.2772 0.3888 0.2002 1 0 Lower Trinity	Upper Trinity REC HARVEST 0 (Estimated) Upper Trinity	Upper Trin Nat Escape 0.3329 0.1134 0.5355 0.0181 0 (Estimated) Upper Trinity Natural 955	0 10 Lower Trin Tribs 0.1920 0.5140 0.2940 0.0000 kimura used 0	Scale-CWT a	2 2 3 4 5 5 Correc applied t Age 2	2 0.9945 0.0955 0.0000 0.0000 Correction Mat (Inverse of Sca 2 2 1.0057 -0.0058 0.0002 0.0000 WCW scales ted proportions o 413 unknown WCW nocwts 1444	0.017: 0.056 0.026: 0.000i rix for ages 2,3,4,5 . ile-CWT age proport -0.018: 1.046: -0.028: 0.0009: known age cwts scales 6	ion matrix.) 3	0.0000 0.0000 0.5000 0.5000 0.5000 0.5000 5 -0.0005 0.0283 -1.0458 2.0180	
Corrected Scale known scales known scales 4 4 5 UNKNOWN CWT	4x4 e age proportion v 31 413 Villow Creek Weir WCW 0.3480 0.1494 0.4868 0.0158 1 TTS Villow Creek Weir WCW 6 4	POOLED data from Includes only fish IDATION MATRIX 2 3 4 5 5 PRECTORS FOR SCALE-18 959 HOOPA Tribal NET HARVEST 0.0243 1 9 HOOPA Tribal NET HARVEST 1 29	all areas: Scale a with both scale as 2 180 1 0 0 0 ged 2 - 5 fish. 2 33 Lower Trinity REC HARVEST 0.0000 kimura used 1 Lower Trinity REC HARVEST	ge and CWT known 3 2 2 109 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	age.) 4 0 9 336 3 0 29 Lower Trinity CARCASS 0.1338 0.2772 0.3888 0.2002 1 0 Lower Trinity	Upper Trinity REC HARVEST 0 (Estimated) Upper Trinity	Upper Trin Nat Escape 0.3329 0.1134 0.5355 0.0181 1 0 (Estimated) Upper Trinity Natural 955 503	0 10 Lower Trin Tribs 0.1920 0.5140 0.2940 0.0000 kimura used 0	Scale-CWT a	2 2 3 4 4 5 5 2 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6	2 0.9945 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000	in the second se	ion matrix.) 3 4 5 0.0008 6 0.0086 7 0.0086 7 0.0086 7 0.0086 7 0.0086 7 0.0086	0.0000 0.0000 0.5000 0.5000 0.5000 0.283 -1.0458 2.0180 WCW age proportions 0.3364 0.1477	
Corrected Scale known scales known scales 4 4 5 UNKNOWN CWT	e age proportion v 31 413 Villow Creek Weir 0.3480 0.1494 0.4868 0.0158 1 TTS Villow Creek Weir WCW 6	POOLED data from Includes only fish IDATION MATRIX 2 3 4 5 5 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	all areas: Scale a with both scale as with both scale as 2 180 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ge and CWT known: 3 2 109 3 0 455 1746 TRH HATCHERY 0.3410 0.2255 0.4259 0.0075 1 40 TRH HATCHERY 854	age.) 4 0 9 336 3 0 29 Lower Trinity CARCASS 0.1338 0.2772 0.3888 0.2002 1 0 Lower Trinity	Upper Trinity REC HARVEST 0 (Estimated) Upper Trinity	Upper Trin Nat Escape 0.3329 0.1134 0.5355 0.0181 0 (Estimated) Upper Trinity Natural 955	0 10 Lower Trin Tribs 0.1920 0.5140 0.2940 0.0000 kimura used 0	Scale-CWT a	2 2 3 4 5 5 Correc applied t Age 2	2 0.9945 0.0955 0.0000 0.0000 Correction Mat (Inverse of Sca 2 2 1.0057 -0.0058 0.0002 0.0000 WCW scales ted proportions o 413 unknown WCW nocwts 1444	0.017: 0.056 0.026: 0.000i rix for ages 2,3,4,5 . ile-CWT age proport -0.018: 1.046: -0.028: 0.0009: known age cwts scales 6	ion matrix.) 3	0.0000 0.0000 0.5000 0.5000 0.5000 0.5000 5 -0.0005 0.0283 -1.0458 2.0180	
Corrected Scale known scales lknown scales 2 3 4 5 UNKNOWN CWTS	e age proportion v 31 413 Villow Creek Weir WCW 0.3480 0.1494 0.4868 0.0158 1 TTS Villow Creek Weir WCW 6 4 22	POOLED data from Includes only fish IDATION MATRIX 2 3 4 5 5 rectors for scale-a- 159 959 Hoopa Tribal NET HARVEST 0.0347 0.1709 0.7701 0.0243 1 9 Hoopa Tribal NET HARVEST 1 29 141	all areas: Scale a with both scale as 2 180 1 0 0 0 ged 2 - 5 fish. 2 33 Lower Trinity REC HARVEST 0.0000 kimura used 1 Lower Trinity REC HARVEST 9 0 0 0 0 0	ge and CWT known 3 2 2 109 3 0 0 455 1746 TRH HATCHERY 0.3410 0.2255 0.4259 0.0075 1 40 TRH HATCHERY 854 445 1219	age.) 4 0 9 336 3 0 29 Lower Trinity CARCASS 0.1338 0.2772 0.3888 0.2002 1 0 Lower Trinity	Upper Trinity REC HARVEST 0 (Estimated) Upper Trinity REC HARVEST 6 0 0	Upper Trin Nat Escape 0.3329 0.1134 0.5355 0.0181 0 (Estimated) Upper Trinity Natural 955 503 1377	0 10 Lower Trin Tribs 0.1920 0.5140 0.2940 0.0000 kimura used 0	Scale-CWT a	2 2 3 4 5 5 Correc applied t Age 2	2 0.9945 0.0945 0.0005 0.0000 0.0000 Correction Mat (Inverse of Sca 2 2 1.0058 0.0002 0.0000 WCW scales ted proportions o 413 unknown WCW nocwts 144 62 201	7.0.017: 0.017: 0.026: 0.000i rix for ages 2,3,4,5 . 1ele-CWT age proport -0.018: 1.046: -0.028: 0.000i	ion matrix.) 3	0.0000 0.0000 0.5000 0.5000 0.5000 0.5000 0.283 -1.0458 2.0180 WCW age proportions 0.3364 0.1477 0.5012	
Corrected Scale known scales nknown scales 2 3 4 5 UNKNOWN CWTS Age 2 3 4 4 5 UNKNOWN CWTS AGE 2 3 4 5 UNKNOWN CWTS AGE 2 3 4 4 5 UNKNOWN CWTS AGE 2 3	4x4 e age proportion v 31 413 413 Willow Creek Weir WCW 0.3480 0.1494 0.4868 0.0158 1 TTS Willow Creek Weir WCW 6 4 22 0 32	POOLED data from Includes only fish IDATION MATRIX 2 3 4 4 5 5 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6	all areas: Scale a with both scale as 2 180 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ge and CWT known 3 2 2 109 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	age.) 4 0 9 336 3 29 Lower Trinity CARCASS 0.3388 0.2072 1 0 Lower Trinity CARCASS	Upper Trinity REC HARVEST (Estimated) Upper Trinity REC HARVEST 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Upper Trin Nat Escape 0.3329 0.1134 0.5355 0.0181 0 (Estimated) Upper Trinity Natural 955 503 1377 28	0 10 Lower Trin Tribs 0.1920 0.5140 0.2940 0.0000 kimura used 0 Hoopa Hook&Line	Scale-CWT a	2 2 3 4 5 5 Correct applied to Age 2	2 0.9945 0.0055 0.0000 0.0000 Correction Mat (Inverse of Sca 2 1.0057 -0.0058 0.0002 0.0000 WCW scales ted proportions o 413 unknown WCW nocwts 144 62 201 7	rix for ages 2,3,4,5	ion matrix.) 3	0.0000 0.0000 0.5000 0.5000 0.5000 0.5000 0.283 -1.0458 2.0180 WCW age proportions 0.3364 0.1477 0.5012	
Corrected Scale known scales known scales 4 5 UNKNOWN CWTCWTS Age 2 3 4 5 UT CWTS Age 2 7 3 4 5 UT CWTS AGE AGE AND AGE AGE AND AGE	e age proportion v	POOLED data from Includes only fish IDATION MATRIX 2 3 4 4 5 5 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6	all areas: Scale a with both scale as with both scale as 2 180 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ge and CWT known 3 2 109 3 0 1746 17746 TRH HATCHERY 0.3410 0.2255 0.4259 0.0075 1 40 TRH HATCHERY 844 445 1219 266 2544	age.) 4 0 9 336 3 29 Lower Trinity CARCASS 0.3388 0.2002 1 0 Lower Trinity CARCASS	Upper Trinity REC HARVEST (Estimated) Upper Trinity REC HARVEST 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Upper Trin Nat Escape 0.3329 0.1134 0.5355 0.0181 0 (Estimated) Upper Trinity Natural 955 503 1377 28	0 10 Lower Trin Tribs 0.1920 0.5140 0.0000 kimura used 0 Hoopa Hook&Line	647 3190	2 2 3 4 5 5 Correct applied to Age 2	2 0.945 0.0945 0.0000 0.0000 0.0000 Correction Mat (Inverse of Sca 2 1.0057 -0.0058 0.0002 0.0000 WCW scales ted proportions o 413 unknown WCW nocwts 144 62 201 7 413	rix for ages 2,3,4,5	ion matrix.) 3	0.0000 0.0000 0.5000 0.5000 0.5000 0.5000 0.283 -1.0458 2.0180 WCW age proportions 0.3364 0.1477 0.5012	
Corrected Scales known scales known scales 4 5 UNKNOWN CWTCWTS Age 2 3 4 5 UT CWTS Age 2 7 3 4 5 UT CWTS AGE AGE AND TOTAL Adult + Jan William CWT CWTS Age 2 7 3 4 5 UT CWT CWT CWT CWT CWT CWT CWT CWT CWT CW	e age proportion v	POOLED data from Includes only fish IDATION MATRIX 2 3 4 4 5 5 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6	all areas: Scale a with both scale as with both scale as 2 180 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ge and CWT known: 3 2 109 3 0 455 1746 TRH HATCHERY 0.3410 0.2255 0.4259 0.0075 1 40 TRH HATCHERY 854 445 1219 26 2544	age.) 4 0 9 336 3 29 Lower Trinity CARCASS 0.2772 0.388 0.2002 1 0 Lower Trinity CARCASS	Upper Trinity REC HARVEST (Estimated) Upper Trinity REC HARVEST 6 0 0 6 TRH + Rec above WCW + Nat	Upper Trin Nat Escape 0.3329 0.1134 0.5355 0.0181 0 (Estimated) Upper Trinity Natural 955 503 1377 28 2863 Add ea	0 10 Lower Trin Tribs 0.1920 0.5140 0.2940 0.0000 kimura used 0 Hoopa Hook&Line	Apportioned minus TRH	Correc applied t Age 2 3 4 5 5	2 0.9945 0.0945 0.0005 0.0000 0.0000 Correction Mat (Inverse of Sce 2 1.0057 -0.0058 0.0002 0.0000 WCW scales ted proportions o 413 unknown WCW nocwts 144 62 201 7 413	in the second se	ion matrix.) 3	0.0000 0.0000 0.5000 0.5000 0.5000 0.5000 0.283 -1.0458 2.0180 WCW age proportions 0.3364 0.1477 0.5012	
Corrected Scale known scales known scales known scales Age 2 3 4 5 UNKNOWN CWT CWTS Age 2 3 4 5 Total Adult + Ja Natural Escaper	e age proportion v	POOLED data from Includes only fish IDATION MATRIX 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	all areas: Scale a with both scale as 2 180 1 0 0 0 ged 2 - 5 fish. 2 33 Lower Trinity REC HARVEST 0.9748 0.0252 0.0000 kimura used 1 Lower Trinity REC HARVEST 9 0 0 0 0 9 portioned to age s	ge and CWT known 3 2 2 109 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	age.) 4 0 9 336 33 29 Lower Trinity CARCASS 0.3388 0.2002 1 0 Lower Trinity CARCASS	Upper Trinity REC HARVEST (Estimated) Upper Trinity REC HARVEST 6 0 0 6 TRH + Rec above WCW + Nat Escapement	Upper Trin Nat Escape 0.3329 0.1134 0.5355 0.0181 1 (Estimated) Upper Trinity Natural 955 503 1377 28 2863 Add easeason if n	0 10 Lower Trin Tribs 0.1920 0.5140 0.2940 0.0000 kimura used 0 Hoopa Hook&Line	Apportioned minus TRH Escapement	Correct applied to the second	2 0.9945 0.0905 0.0000 0.0000 Correction Mat (Inverse of Sca 2 1.0057 -0.0058 0.0002 0.0000 WCW scales ded proportions o 413 unknown WCW nocwts 144 62 201 7 413	in the second se	ion matrix.) 3	0.0000 0.0000 0.5000 0.5000 0.5000 0.5000 0.283 -1.0458 2.0180 WCW age proportions 0.3364 0.1477 0.5012	
Corrected Scales known scales iknown scales 4 4 5 UNKNOWN CWT CWTS Age 2 3 4 5 Untraction of the control of the	4x4 e age proportion v 31 413 Villow Creek Weir WCW 0.3480 0.1494 0.4868 0.0158 1 TTS Villow Creek Weir WCW 6 4 22 0 32 acks ment, Trinity basi	POOLED data from Includes only fish IDATION MATRIX 2 3 4 5 5 6 7 8 6 7 8 6 7 8 7 8 7 8 7 8 7 8 7 8 7	all areas: Scale a with both scale as 2 180 1 0 0 ged 2 - 5 fish. 2 33 Lower Trinity REC HARVEST 9 0 0 1 Lower Trinity REC HARVEST 9 0 0 0 9 portioned to age s	ge and CWT known: 3 2 109 3 0 11746 TRH HATCHERY 0.3410 0.2255 0.4259 0.0075 1 40 TRH HATCHERY 854 445 1219 26 2544 structure. Age 2	age.) 4 0 9 336 3 0 29 Lower Trinity CARCASS 0.1338 0.2772 0.3888 0.2002 1 0 Lower Trinity CARCASS	Upper Trinity REC HARVEST (Estimated) Upper Trinity REC HARVEST 6 0 0 0 TRH + Rec above WCW + Nat Escapement 11877	Upper Trin Nat Escape 0.3329 0.1134 0.5355 0.0181 1 0 (Estimated) Upper Trinity Natural 955 503 1377 28 2863 Add ea season if n Fudge	0 10 Lower Trin Tribs 0.1920 0.5140 0.2940 0.0000 kimura used 0 Hoopa Hook&Line	Apportioned minus TRH Escape 744	Correc applied to Age 2 3 4 5 5 Natural Escap #s minus above Props 0.3329 0.3329	2 0.9945 0.0955 0.0000 0.0000 Correction Mat (Inverse of Sca 2 1.0057 -0.0058 0.0002 0.0000 WCW scales elted proportions o 413 unknown WCW nocwts 1444 62 201 7 413 ement b WCW creel #s	in the second se	ion matrix.) 3	0.0000 0.0000 0.5000 0.5000 0.5000 0.5000 0.283 -1.0458 2.0180 WCW age proportions 0.3364 0.1477 0.5012	
Corrected Scale known scales sknown scales sknown scales 4 5 UNKNOWN CWT CWTS Age 2 3 4 5 UT Countries Age 2 3 4 5 UT Countries Age 2 7 5 UT Countries Age 7 5 UT Countries	e age proportion v 31 413 413 Villow Creek Weir WCW 0.3480 0.1494 0.4868 0.0158 1 TTS Villow Creek Weir WCW 6 4 22 0 32 acks ement, Trinity basi	POOLED data from Includes only fish IDATION MATRIX 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	all areas: Scale a with both scale as 2 180 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ge and CWT known: 3 2 109 3 0 455 1746 TRH HATCHERY 0.3410 0.2255 0.4259 0.0075 1 40 TRH HATCHERY 854 1219 26 2544 structure. Age 2 3	age.) 4 0 9 336 3 29 Lower Trinity CARCASS 0.2772 0.388 0.2002 1 0 Lower Trinity CARCASS 0.4002 0 WCW age proportions 0.3364 0.4477	Upper Trinity REC HARVEST (Estimated) Upper Trinity REC HARVEST 6 0 0 6 TRH + Rec above WCW + Nat Escapement 11877 5213	Upper Trin Nat Escape 0.3329 0.1134 0.5355 0.0181 0 (Estimated) Upper Trinity Natural 955 503 1377 28 2863 Add ea season if n Fudge 0 0	0 10 Lower Trin Tribs 0.1920 0.5140 0.2940 0.0000 kimura used 0 Hoopa Hook&Line	Apportioned minus TRH Escapement 774(2637	Correc applied t Age 2 3 4 5 5	2 0.9945 0.0945 0.0006 0.0000 0.0000 Correction Mat (Inverse of Sca 2 2 1.0058 0.0002 0.0000 WCW scales and the scale of	in the second se	ion matrix.) 3	0.0000 0.0000 0.5000 0.5000 0.5000 0.5000 0.283 -1.0458 2.0180 WCW age proportions 0.3364 0.1477 0.5012	
Corrected Scale known scales known scales Age 2 3 4 5 UNKNOWN CWT CWTS Age 2 3 4 5 Total Adult + Ja Natural Escaper	4x4 e age proportion v 31 413 Villow Creek Weir WCW 0.3480 0.1494 0.4868 0.0158 1 TTS Villow Creek Weir WCW 6 4 22 0 32 acks ment, Trinity basi	POOLED data from Includes only fish IDATION MATRIX 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	all areas: Scale a with both scale as 2 180 1 0 0 ged 2 - 5 fish. 2 33 Lower Trinity REC HARVEST 9 0 0 1 Lower Trinity REC HARVEST 9 0 0 0 9 portioned to age s	ge and CWT known: 3 2 109 3 0 11746 TRH HATCHERY 0.3410 0.2255 0.4259 0.0075 1 40 TRH HATCHERY 854 445 1219 26 2544 structure. Age 2	age.) 4 0 9 336 3 0 29 Lower Trinity CARCASS 0.1338 0.2772 0.3888 0.2002 1 0 Lower Trinity CARCASS	Upper Trinity REC HARVEST (Estimated) Upper Trinity REC HARVEST 6 0 0 0 TRH + Rec above WCW + Nat Escapement 11877	Upper Trin Nat Escape 0.3329 0.1134 0.5355 0.0181 1 0 (Estimated) Upper Trinity Natural 955 503 1377 28 2863 Add ea season if n Fudge	0 10 Lower Trin Tribs 0.1920 0.5140 0.2940 0.0000 kimura used 0 Hoopa Hook&Line	Apportioned minus TRH Escape 744	Correc applied t Age 2 3 4 5 5	2 0.9945 0.0905 0.0000 0.0000 Correction Mat (Inverse of Sct 2 1.0057 -0.0058 0.0002 0.0000 WCW scales eted proportions o 413 unknown WCW nocwts 144 62 201 7 413	in the second se	ion matrix.) 3	0.0000 0.0000 0.5000 0.5000 0.5000 0.5000 0.283 -1.0458 2.0180 WCW age proportions 0.3364 0.1477 0.5012	

Appendix H. 2006 Kla	#	#	Total	C	CALCULA			Fate!			E AGE PF			T-4-1	Scales read or	D	
Hatchery spawners Iron Gate Hatchery (IGH)	Grilse 2386	Adults 11604	Run 13990	2386	4215	7251	138	Total 13990	scales	0.170	0.305	0.515	0.009	Total 1.0	unknown CWTs 1,229	Redd co <59cm	ounts
Trinity River Hatchery (TRH)	4076	7918	11994	0.17 4076	0.301 2576	0.52 5244	0.01 97	11994	IGH cwts scales	78 0.341	82 0.226	280 0.426	15 0.008	455 1.0	0 1746		
Hatchery spawner subtotal:	6462	19522	25984	6462	6791	12495	235	25984 0.293	TRH cwts	854	445	1219	26	2544	0		
Natural Spawners							n hatchery										
Trinity River mainstem above WCW Trinity River mainstem below WCW	7740 63	15508 126	23248 189	7740 63	2637 21	12450 101	421 3	23248 189	scales scales	0.33291 0.33291	0.11343 0.11343	0.53554 0.53554		1.0 1.0	surrogate above	63	redds
Salmon River Basin (includes Wooley Cr)	791	1278	2069	791	698	580	0	2069	scales	0.38230	0.33727	0.28043	0.00000	1.0	159	<=56cm	0.3823
Scott River Shasta River	1953 1395	3007 789	4960 2184	1953 1395	1759 151	1247 625	1 13	4960 2184	scales scales	0.39367 0.63853	0.35470 0.06916	0.25146 0.28604		1.0 1.0	1,162 486	<=59cm see Shasta wor	0.3651
									Shasta CWT	0	0	1	0	1	0		
Bogus Creek	764	3368	4132	764	1398	1929	41	4132	scales Bogus CWT	0.18555 7	0.33876 15	0.46599 27	0.00970	1.0 50	588	<=58cm	0.1533
Main stem Klamath (IGH to Shasta R)	577	3072	3649	577	1048	1904	120	3649	scales	0.15826 0	0.28718 0	0.52153	0.03303	1.0	531	<=60cm	0.1198
Main stem Klamath (Shasta R to Indian Cr)	276	1466	1742	276	500	908	58	1742	Upper main		0.28718	0.52153		1.0	Surrogate used	733	redds
subtotal:	13,559	28,614	42,173	0 13,559	8,212 0.0054	19,744 0.0054	657 0.0054	42,173	Unwe	eighted Sa	lmon Scott((SS) - SUR	ROGATE				
Manath Tributaria	5	Surrogate							SS	0.38799	0.34598	0.26595		1.0		Dadda	Live
Klamath Tributaries Aiken Cr.	0	0	0	0	0	0	0	0	SS	0.38799	0.34598	0.26595	0.00008			Redds 0	adults 0
Beaver Cr.	30	48	78	30	27	21	0	78	SS	0.38799	0.34598	0.26595				24	0
Bluff Cr. Boise Cr.	1 0	2	3 0	1 0	1 0	1 0	0	3 0	SS SS	0.38799 0.38799	0.34598 0.34598	0.26595 0.26595				1 0	0
Camp Cr.	245	387	632	245	219	168	0	632	SS	0.38799	0.34598	0.26595				135	117
Clear Cr. Dillon Cr.	108 41	170 65	278 106	108 41	96 37	74 28	0 0	278 106	SS SS	0.38799 0.38799	0.34598 0.34598	0.26595 0.26595				84 30	2 5
Elk Cr.	67	106	173	67	60	46	0	173	SS	0.38799	0.34598	0.26595	0.00008			50	6
Grider Cr. Horse Cr.	28 0	44 0	72 0	28 0	25 0	19 0	0	72 0	SS SS	0.38799 0.38799	0.34598 0.34598	0.26595 0.26595				22	0
Independence Cr.	0	0	0	0	0	0	0	0	SS	0.38799	0.34598	0.26595	0.00008			0	0
Indian Cr. Irving Cr.	165 0	260 0	425 0	165 0	147 0	113 0	0	425 0	SS SS	0.38799 0.38799	0.34598 0.34598	0.26595 0.26595				126 0	8
Perch Cr.	0 46	0 73	0 119	0	0 41	0	0	0 119	SS	0.38799	0.34598		0.00008			0	0
Red Cap Cr. Thompson Cr.	0	0	0	46 0	0	32 0	0	0	SS SS	0.38799 0.38799	0.34598 0.34598	0.26595 0.26595				35 0	3
Slate Cr Klamath Tribs subtotal	6 739	10 1165	16 1904	6 739	6 659	4 506	0	16 1904	SS	0.38799	0.34598 0.56532	0.26595 0.43454		0.61		<u>4</u> 511	2 143
	139	1103	1904	759	039	300	U	1904			0.30332	0.43434	0.00014			311	143
Trinity Tributaries Horse Linto Cr.	40	80	120	40	14	64	2	120	scales	0.33291	0.11343	0.53554	0.01811	1.0		40	redds
Cedar Cr (trib to Horse Linto)	31	62	93	31	11	50	2	93	scales	0.33291	0.11343	0.53554		1.0			redds
subtotal Non-Reservation Misc. tribs sub total	71 810	142 1307	213 2117	71 810	24 683	114 620	4 4	213 2117	\$	surrogate 7	Frinity River	r Mainstem					
							-										Live
Reservation Tributaries-Hoopa Valley Campbell Cr.	0	0	0	0	0	0	0	0	scales	0.33291	0.11343	0.53554	0.01811			Redds 0	adults
Hostler	0	0	0	0	0	0	0	0	scales	0.33291	0.11343	0.53554	0.01811			0	
Mill Pine Cr.	133 0	266 0	399 0	133 0	45 0	214 0	7 0	399 0	scales scales	0.33291	0.11343 0.11343	0.53554 0.53554				133	
Soctish	0	0	0	0	0	0	0	0	scales	0.33291	0.11343	0.53554				0	
Supply Cr. Tish Tang Cr.	10 48	20 96	30 144	10 48	3 16	16 77	1 3	30 144	scales scales	0.33291	0.11343 0.11343	0.53554 0.53554	0.01811			10 48	
Others subtotal	0 191	0 382	0 573	0 191	0 65	0 307	0 10	0 573	scales	0.33291 0.33291	0.11343 0.11343	0.53554 0.53554	0.01811			0 191	
	191	302	373	191	03	307	10	3/3	scales	0.33291	0.11343	0.55554	0.01611			191	
Reservation Tributaries-Yurok Blue Cr.	20	119	139	20	65	54	0	139	Salmon R	not used	0.33727	0.28043	0.00000	0.62			
reservation tributaries subtotal	211	501	712	211	130	361	10	712		adults	0.54601	0.45399	0.00000	1.00			
Natural spawner subtotal:	14580	30422	45002	14580	9025	20725	671	45002		30421							
Total spawner subtotal:	21042	49944	70986	21042	15816	33220	906	70986									
Angler Harvest			2.1														
Klamath River (below Hwy 101)	60	1	61	60	0.0	1	0.00	61	LRC scales LRC cwts	0.99160	0.00000	0.00679	0.00160	1.00	983 0		
Klamath River (Hwy 101 to Weichpec)	4421	38	4459	4421	1	30	7	4459	LRC scales		0.00000	0.00679	0.00160	1.00			
Klamath River (Weitchpec to IGH)	721	18	739	721	7	11	0	739	LRC cwts	24 0.97564	0.00897	0.01512	0.00027	25 1.00	0		
Trinity River (below Willow Cr. Weir)	205	5	210	205	5	0	0	210	scales	0.97479	IGH scale 0.02521	s adult sur 0.00000	ogate 0.00000	1.00	33		
Triffity River (below Willow Cr. Well)	200	3	210	203	3	0	U	210	lower cwts	0.97479	0.02521	0.00000	0.00000	9	0		
Trinity River (above Willow Cr. Weir) Angler harvest subtotal:	61 5,468	0 62	61 5,530	61 5,468	0 13	0 42	0 7	61 5,530	upper cwts	1.00000	0.00000	0.00000	0.00000		Surrogate for a adult cwts only	dults -lowr cre	eel
Ü	0,400	02	0,000	0,400	10	72	•	0,000	upper ewis	Ü	· ·	· ·	Ū	Ü	addit CWIS OTHY		
Tribal Harvest Klamath River (Estuary)	30	2726	2756	30	688	1944	94	2756	scales	0.01060	0.25092	0.70376	0.03472	1	1,108	<=58cm	0.019
									YTFP EST cwt	1	7	35	0	43	0		
Klamath River (101 to Trinity R)	240	3396	3636	240	965	2300	132	3636	scales YTFP MU cwt	0.06685 1	0.26795 7	0.62867 53	0.03653	1 62	2,211 0	<=58cm	0.053
Trinity River	145	4163	4308	145	736	3327	100	4308	scales	0.03473	0.17091	0.77009 141	0.02426	1 171	959 0		
Tribal harvest subtotal:	415	10285	10700	415	2389	7571	326	10700	Hoopa cwts	1	29	141	U	171	U		
Total harvest	5883	10347	16230	5883	2402	7613	333	16230									
Totals		0.5-1			4.5.5												
	26925	60291 76	87216 188	26925 112	18218 23	40833 52	1239 2	87216 188	0.02041	angler dro	poff mort r	rate on ha	rvest (not	total co	ntacts)		
In-river run and escapement Angling dropoff mortality (2.04%)	112									J	,					1	
In-river run and escapement Angling dropoff mortality (2.04%) Net dropoff mortality (8.7%)	36	894	930	36	208	658	28	930	0.08696 ı		ff mort rate			al conta			
Angling dropoff mortality (2.04%)					208 111	658 250	28	930 368	0.08696 ı		ff mort rate age comp o 0.301		total run	al conta 1.000			
Angling dropoff mortality (2.04%) Net dropoff mortality (8.7%)	36	894	930	36					0.08696 ı		age comp o	f adults in	total run				